68=(6x^2)+(32x+40)

Simple and best practice solution for 68=(6x^2)+(32x+40) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 68=(6x^2)+(32x+40) equation:



68=(6x^2)+(32x+40)
We move all terms to the left:
68-((6x^2)+(32x+40))=0
We calculate terms in parentheses: -(6x^2+(32x+40)), so:
6x^2+(32x+40)
We get rid of parentheses
6x^2+32x+40
Back to the equation:
-(6x^2+32x+40)
We get rid of parentheses
-6x^2-32x-40+68=0
We add all the numbers together, and all the variables
-6x^2-32x+28=0
a = -6; b = -32; c = +28;
Δ = b2-4ac
Δ = -322-4·(-6)·28
Δ = 1696
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1696}=\sqrt{16*106}=\sqrt{16}*\sqrt{106}=4\sqrt{106}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-4\sqrt{106}}{2*-6}=\frac{32-4\sqrt{106}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+4\sqrt{106}}{2*-6}=\frac{32+4\sqrt{106}}{-12} $

See similar equations:

| 6(4+5x)=384 | | 2-3f=7 | | -20y+10y+10+10=-40 | | 2/7w-3=21 | | 7x-4=3x-40 | | -w+17=-16 | | p+p+2+3p=17 | | 6=-9y-3 | | X=√5x+11-1 | | d=5*4^2 | | 3y+12=58 | | 22=d/27 | | f(3)=3^2+11 | | 11v-7v+2v-4v+2v=4 | | x12=-6 | | 2/3(3x-5)-3(2x-3)=3/1 | | 7x-(2x+12)=5x+4 | | -18+2x=-2+x | | X=✓5x+11-1 | | (3x-2)=134 | | 18=v/7 | | p+2p-2p=17 | | -x+105x-400=0 | | -4y+18=-3-y | | -17x-13=-166 | | 5(4x+5)=-55 | | 8d-5d+5d+d=9 | | 44=5t | | 636=4j | | 23n+7=15 | | 4(-4)6y=8 | | 3x+-3=4x+4 |

Equations solver categories